
A Discussion of Optimization Strategies
and Performance for Unstructured

Computations in Parallel HPC Platforms

DOD HPC UGC 2001

June 21, 2001

D. Shires, R. Mohan*, and A. Mark

Computational and Information Sciences Directorate
High Performance Computing Division

*University of Minnesota

Outline

• Introduction and Motivation
• Computational Problem
• Parallel Solution Approaches

– MPI
• Optimizations

– HPF
• Optimizations

• Performance
– HPF vs. MPI
– MPI Cross-Platform

• Concluding Remarks

Motivation

• Investigate and explore various approaches to
parallelism on DOD HPC systems
– Portable languages and libraries
– Data parallelism, message passing

• Perform studies in the context of a real Army (and
DOD, and industry, etc.) problem
– Promote composite material insertion through risk

reduction
– Reduce risk by way of process simulations
– Use novel solution approaches and parallel formulations

for large-scale simulations
– Assist in fielding Future Combat Systems (FCS)

Applications

• Ground vehicles

• Rotary wing structures

Computational Problem

• Composite manufacturing prediction of
– Resin impregnation behavior
– Track pressure field and flow fronts

• Addresses various liquid composite molding processes
– RTM, VARTM, Low pressure RTM

• Eulerian fixed-meshes used
• Unstructured meshes represent geometrically complex

models
– Represent difficult challenges to getting good parallel performance

Parallel Software Developments

• Software developments performed under CHSSI
IMT-4

• Primary deliverable is the MPI-based Composite
Manufacturing Process Simulation Environment
(COMPOSE)

• Consists of a suite of parallel/serial pre- and post-
processing tools

• New modules are continually under development
to fill RDEC and industry requirements

HPF and MPI
Pros and Cons

• HPF
– Higher conceptual level
– Easy to use directives

and data distribution
– A language; requires

robust compilers
– Compiler controlled

communication difficult
to optimize

– Some details are
proprietary-obscured

• MPI
– Low level, “assembly

language” parallelism
– Requires data

decomposition
– Use well-tested native

compilers; built on a
library

• Good optimization and
performance analysis

– Tedious attention to
detail can give good
results

MPI Parallel Software
Developments

• Provides 2-D and 3-D solutions
– Triangular, quadrilateral, and tetrahedral elements

• Preprocessors written in C++
– compose_convert

• Converts from other formats (NASTRAN) to COMPOSE

– compose_check
• Checks mesh to ensure mesh connectivity

– compose_optimize
• Optimizes mesh structure for cache performance

– compose_partition
• Partitions mesh for multiprocessor execution

MPI Parallel Software
Developments

• Pre- and post-processing developments are
ongoing in Java
– Provides cross-platform support
– Provides better tech transfer to customer base

MPI Parallel Software
Developments

• Core solver written in Fortran 90
– Slightly more friendly development environment over FORTRAN 77

• Heap memory
• Abstract data types
• Assumed shape arrays with intrinsics

• Message passing characteristics
– Attempted to remove all explicit barrier calls through control flow

analysis
– Attempted to hide communication behind computation

• Tight loop structures of solver and update sections limited this
somewhat

– Messages consist of non-blocking sends, blocking receives, and
global reduction operations

MPI Optimizations

• MPI is SPMD parallelism
– Sequential optimization provides parallel optimization

• Data optimizations for cache
– Poorly numbered meshes from CAD packages do little

for cache affinity

MPI Optimizations

– Implemented a technique based on Reverse Cuthill-
McKee

– Effects
• 10% reduction of wall clock time on T3E-1200
• Before and after not tested on IBM Nighthawk Power3

Distribution of non-zero entries in a finite element sparse matrix

MPI Optimizations

• Large cache (8 MB) SGI Origin 3800 showed no wall clock time
change

• Hardware counters did show some improvements

0.431.21Memory
Bandwidth
Used (MB/s)

9530.244548.95L2 Cache Line
Reuse

5.675.42L1 Cache Line
Reuse

RenumberedOriginalStatistic

MPI Optimizations

• Compiler and source code optimizations
– Careful profiling can reveal problems
– One update routine contained a division operation

inside a loop

– Used multiply by reciprocal, loop invariant code motion
to help pipeliner and instruction scheduler

 #<swps> 2 flops (7% of peak)
 (madds count as 2)
 #<swps> 0 madds (0% of peak)
 #<swps> 3 mem refs (21% of peak)
 #<swps> 3 integer ops (10% of peak)
 #<swps> 8 instructions (14% of peak)

 #<swps> 8 flops (30% of peak)
 (madds count as 2)
 #<swps> 4 madds (30% of peak)
 #<swps> 13 mem refs (100% of peak)
 #<swps> 6 integer ops (23% of peak)
 #<swps> 23 instructions (44% of peak)

MPI Optimizations

• Final optimization dealt with instruction scheduling
– Reverse procedure integration

• Operates as an inverse to inlining
• Contiguous code segments internal to a subroutine are moved to a

separate subroutine
• Performance analysis and investigation of assembly code revealed

complicated instruction scheduling in a critical region
• Matrix-vector multiply inside a larger loop
• Compiler generated prefetching instructions for outer loop of mat-vec

multiply
• This technique allows some control (along with compiler options) for

phase ordering type problems
– Prefetching, out of order execution, software pipelining

• Results:
– 15% reduction in time for SGI O3K
– No change on T3E-1200
– Not tested on IBM Nighthawk Power 3

HPF Parallel Software
Developments

• Data parallel model
• New, more robust Portland Group 3.2 compiler came on-

line
• Allows for asymmetric block distribution of data

– Critical for good performance on unstructured grids
– Overcomes version 3.0 restrictions requiring conformable arrays
– We encountered problems with interactions between intermediate

code and native compilers
– Not enough time to get everything working

• Past optimizations covered in previous paper/presentation
• Currently testing new compiler and software on SGI Origin

3800 system

Performance

• HPC platforms used include
– SGI Origin 3800

• Scalable currently limited to 128 processor system

– IBM Nighthawk 2 SMP with Power3 nodes
• Scalability tests up to 512 processors

– Cray T3E-1200
• Scalability tests up to 1024 processors

Performance of HPF versus MPI

• Currently limited to Cray T3E system
– Timing and compiler constraints
– Past optimization of PGHPF compilers for that system

• Comparable compiler flags
– PGHPF –fast option, invokes native compiler with
–Ounroll –Opipeline2 –Oscalar3 flags

– MPI Fortran 90 compiled with –O3,pipeline3 flags
– Times are exclusive of I/O

Performance of HPF versus MPI

• MPI outperformed HPF in every trial
– Factors ranged from 2.7 to 4.5 times faster

• HPF meshes were not renumbered using RCM
– May reduce time by up to 10% as seen with MPI runs

MPI Cross-Platform Performance

• Jobs submitted in standard production queues
– IBM system in pioneer mode

• At or near full capacity

• 5 large-scale meshes tested, 2 presented
– Mesh 1 - 45,547 nodes, 89,945 elements
– Mesh 2 – 405,327 nodes, 809,505 elements

• Overall timings also dependent on processing
conditions, which were different

MPI Cross-Platform Performance

• Performance starts to degrade as code becomes
communication bound

• Good performance up to 64 and 128 processors
– 1 processor 2 week run can complete in about 3.5 hours using 64

PE

• T3E requires roughly double the CPUs to get comparable
performance

Concluding Remarks

• Parallel computing and CHSSI support have
enabled solutions to large-scale manufacturing
problems
– Applications to ground vehicles, air structures, etc.

• HPF and MPI provide valid solution approaches
– MPI is more efficient and portable
– HPF continues to mature, but not fast enough

• Careful performance analysis and profiling can
reveal many optimization opportunities
– Execution time on the SGI 3800 reduced by about 35%

